Residually nilpotent one-relator groups with nontrivial centre
نویسندگان
چکیده
منابع مشابه
Almost All One-relator Groups with at Least Three Generators Are Residually Finite
We prove that with probability tending to 1, a 1-relator group with at least 3 generators and the relator of length n is residually finite, virtually residually (finite p)-group for all sufficiently large p, and coherent. The proof uses both combinatorial group theory and non-trivial results about Brownian motions.
متن کاملOn One-relator Inverse Monoids and One-relator Groups
It is known that the word problem for one-relator groups and for one-relator monoids of the form Mon〈A ‖ w = 1〉 is decidable. However, the question of decidability of the word problem for general one-relation monoids of the form M = Mon〈A ‖ u = v〉 where u and v are arbitrary (positive) words in A remains open. The present paper is concerned with one-relator inverse monoids with a presentation o...
متن کاملAutomorphisms of One-relator Groups
It is a well-known fact that every group G has a presentation of the form G = F/R, where F is a free group and R the kernel of the natural epimorphism from F onto G. Driven by the desire to obtain a similar presentation of the group of automorphisms Aut(G), we can consider the subgroup Stab(R) ⊆ Aut(F ) of those automorphisms of F that stabilize R, and try to figure out if the natural homomorph...
متن کاملFinitely generated nilpotent groups are finitely presented and residually finite
Definition 1. Let G be a group. G is said to be residually finite if the intersection of all normal subgroups of G of finite index in G is trivial. For a survey of results on residual finiteness and related properties, see Mag-nus, Karrass, and Solitar [6, Section 6.5]. We shall present a proof of the following well known theorem, which is important for Kharlampovich [4, 5]. See also O. V. Bele...
متن کاملThe isomorphism problem for residually torsion-free nilpotent groups
Both the conjugacy and isomorphism problems for finitely generated nilpotent groups are recursively solvable. In some recent work, the first author, with a tiny modification of work in the second author’s thesis, proved that the conjugacy problem for finitely presented, residually torsion-free nilpotent groups is recursively unsolvable. Here we complete the algorithmic picture by proving that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1996
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-96-03148-6